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1  | INTRODUC TION

A geographic information system (GIS) is designed to store, process, visualize, and model spatial data. Both com-
mercial and free/open- source GIS software packages have been widely used in many domains to promote spatial 
thinking and action. QGIS (previously known as Quantum GIS) is an open- source cross- platform software pro-
gram. It is also a standout among the best- known open- source GIS programming frameworks. Furthermore, it 
is the most popular framework on the GIS section of the Stack Exchange (https://stack excha nge.com/) website 
(a community- based question- and- answer service). Such applications have attracted the attention of many en-
terprises, organizations, and individuals seeking the power of GIS. These applications can be used to realize the 
operation and management of data, to help better enterprises improve efficiency. These demands indicate that 
GIS development applications have been increasingly sought after, but there are often doubts for those who have 
not been exposed to GIS applications. Because it is difficult to find the corresponding GIS functions from a large 
number of functions, some GIS- related assumptions are often not met because a related development technology 
cannot be found, causing the users to make wrong decisions.
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To develop GIS- related applications or tools, developers need to solve many technical problems. They tend 
to post the questions they encounter on the internet and look forward to answers. Community- based question- 
and- answer services on the web are attracting more and more scholars and developers to join (Jeon, Croft, & 
Lee, 2005), such as Stack Exchange (Stack Overflow), Quora, and Reddit. The results of our empirical study show 
that more than 52.93% of accepted answers, 97.85% of the QGIS- related answers in the whole data sets contain 
API documentation links. In other words, users often refer to software documentation when answering program-
ming questions (Li, Sun, & Xing, 2018). In this article, we aim to build an information retrieval (IR) system that 
recommends software documentation for a given programming question.

We can treat the selection of relevant API documentation processes as a ranking task by using a ranking model 
f (q, d) to sort the documents, where q denotes a query or question and d denotes a document or API documentation 
in GIS. Traditionally, no training is needed, or only tuning a small number of parameters is necessary (Li, 2011a). 
Some text- based similarity metrics perform poorly at measuring sentence distance when there is little word overlap 
between the query and relevant documents, such as the Jaccard coefficient and the overlap coefficient (Nassif, 
Mohtarami, & Glass, 2016). We need to find an approach that can represent the semantics of document texts.

Compared with open- domain query– API document (Question and Answering (QA)) problems, GIS QA is more 
challenging. First, the length of each GIS- related API document is usually very long (more than 1,000 words), 
and the existing open- domain methods are designed for data sets with short text length— such as SQuAD 1.1 
(Rajpurkar, Zhang, Lopyrev, & Liang, 2016) and HotpotQA (Yang et al., 2018). When these methods are applied 
to QGIS data sets, usability is greatly reduced. We tried to use the approach in He, Ning, and Roth (2019) and an 
approach based on BERT (Devlin, Chang, Lee, & Toutanova, 2018), but failed due to memory overflow issues (we 
used a machine with 128 GB of memory). Second, the GIS data sets contain a lot of special vocabulary, such as 
“QgsMapLayer,” “QgsLayout,” and “QgsGeometry.” These words are not frequently used, but they are critical for 
answering GIS questions. However, the open- domain method cannot represent their semantics well. For example, 
if we use BERT directly, the word “QgsMapLayer” will be decomposed into “q”, “##gs”, “##ma”, “##play”, “##er”, 
losing its special meaning.

To meet the above challenges, we propose an innovative approach called QA4GIS. We first use Apache Lucene 
(https://lucene.apache.org/) and word representations to build a subset from the whole data sets as the candi-
date documents for each query. Second, we build a four- layer deep learning model to extract the final abstract 
representation from a query– documentation pair. Third, with the representations of the query– documentation 
pairs, we train the learning- to- rank (LTR) model using LambdaMART (Wu, Burges, Svore, & Gao, 2010) and use the 
model to rerank the candidate documents to get the final relevant documents. The key steps are how to extract 
representations of the query- documentation pairs and training the LTR model. We use a pre- trained DistilBERT 
(Sanh, Debut, Chaumond, & Wolf, 2019) model to build the sentence representations, Keras (https://keras.io/) to 
build the four- layer deep learning model, and RankLib (https://sourc eforge.net/p/lemur/ wiki/RankL ib/) to train 
the LTR model. The innovations of this article are as follows.

1. It is difficult to directly give an answer to a technical question about GIS. Instead, this article turns the 
QA problem into an IR problem by answering with documents. We created an innovative system with 
DNN and LTR to answer developer questions on community- based question answering (CQA) websites.

2. To the best of our knowledge, we are the first to use API documents to answer GIS software questions. We also 
did an empirical study showing that relevant API documentation can answer most QGIS questions.

3. We propose a novel machine learning approach to learn QA pair semantic representations.
4. We did an extensive comparative evaluation and in- depth analysis of QA4GIS.

The remainder of this article is organized as follows. Section 2 summarizes related work. Section 3 presents 
the empirical study. Section 4 details QA4GIS step by step. Section 5 presents the experiments and evaluation of 
QA4GIS. Section 6 discusses different aspects of QA4GIS. Section 7 concludes.

https://lucene.apache.org/
https://keras.io/
https://sourceforge.net/p/lemur/wiki/RankLib/
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2  | REL ATED WORK

In this section, we first briefly review some related work on question answering that can be used in the GIS do-
main. Then we introduce some techniques about learning to rank.

2.1 | Information retrieval

Given a query, an IR system can retrieve documents that are relevant to the query. Queries can represent informa-
tion needs, and the retrieved documents usually are given a relevance score to the query. Thus, the results of an 
IR system are typically ranked; this is the key difference of information retrieval searching compared to database 
searching (Jansen & Rieh, 2010). IR has made a tremendous amount of progress; methods have shifted from 
traditional bag- of- word retrieval functions such as tf- idf (Wu, Luk, Wong, & Kwok, 2008) and BM25 (Robertson 
& Zaragoza, 2009), to neural IR models (Cohen, Mitra, Hofmann, & Croft, 2018; Nogueira & Cho, 2017; Rosset, 
Jose, Ghosh, Mitra, & Tiwary, 2018). Recently, some methods based on BERT have also made significant improve-
ments, for example, MacAvaney, Yates, Cohan, and Goharian (2019) achieves state- of- the- art performance on 
benchmark data sets using a BERT- based method. In addition, supervised neural ranking models can benefit from 
weakly labeled data where labels are obtained automatically without human annotators. For example, by labeling 
the data with BM25 first, Dehghani, Zamani, Severyn, Kamps, and Croft (2017) achieve impressive performance 
on their neural networks.

2.2 | Question answering

2.2.1 | GIS analytical question answering and geographic question answering

In GIS, a typical workflow of answering an analytical question is to transform a certain type of data into another 
certain type of goal (Scheider, Meerlo, Kasalica, & Lamprecht, 2020; Scheider, Nyamsuren, Kruiger, & Xu, 2020), 
which means this kind of question cannot be answered directly. The key to solving these questions becomes find-
ing which types would need to be transformed. Scheider, Ballatore, and Lemmens (2019) turn geospatial questions 
into a structured query called SPARQL. Scheider, Meerlo, et al. (2020) propose a Web Ontology Language design 
pattern that can be used for annotating and reasoning over GIS tools. They also formalize how core concepts 
(including field, object, event, and network) can be represented with common geodata types and how they can be 
transformed to answer geoanalytical questions.

Geographic questions look very similar to natural language, for example “How long does it take to drive from 
Newark to New York?” However, they also have their unique differences. First, many geographic questions are 
highly context- dependent and subjective. Second, the answers are typically derived from a sequence of spatial 
operations. Third, geographic questions are often affected by vagueness and uncertainty at the conceptual level 
(Bennett, Mallenby, & Third, 2008; Mai, Yan, Janowicz, & Zhu, 2019). To handle such cases, Mai et al. (2019) use 
so- called query relaxation and rewriting techniques (Elbassuoni, Ramanath, & Weikum, 2011). Hamzei et al. (2019) 
propose a data analysis approach that extracts patterns of place- related information through semantic encoding.

In addition, many scholars are very interested in using (knowledge) graphs to deal with geographic questions. 
Mai et al. (2020) propose a location- aware knowledge graph embedding model called SE- KGE to answer geo-
graphic questions in the GIS domain. This model applies a location encoder to incorporate spatial information 
(coordinates and spatial extent) about geographic entities, and incorporates spatial information (especially spatial 
extent) about geographic entities into the model architecture. Li, Song, and Tian (2019) use a spatial operation 
ontology (a formally defined and machine- understandable knowledge base) to categorize data sets and detect the 
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key elements (space, time, theme, analysis) from a spatial question, then generate an executable workflow for an-
swering the spatial question. Hamilton, Bajaj, Zitnik, Jurafsky, and Leskovec (2018) proposed an end- to- end logic 
query answering model called GQE which can answer conjunctive graph queries.

2.2.2 | Natural language question answering

Other methods are commonly used in many domains. Brokos, Malakasiotis, and Androutsopoulos (2016) represent 
documents and questions as weighted centroids of word embeddings and rerank the retrieved documents with 
word mover's distance (WMD). The WMD measures the dissimilarity between two text documents as the mini-
mum distance that the embedded words of one document need to “travel” to reach another document's embed-
ded words. This method is hyperparameter- free and straightforward to understand and use. We use this method 
as one of our baselines. Besides, neural ranking networks in the natural language processing domain perform well, 
and many practitioners apply these models to information retrieval tasks (Mitra, Diaz, & Craswell, 2017). In the 
work of Xiong, Dai, Callan, Liu, and Power (2017), these methods fall into two groups (Guo, Fan, Ai, & Croft, 2016): 
representation- based and interaction- based. Representation- based models aim to obtain a representation for the 
text in both queries and documents; interaction- based models, on the other hand, aim to capture the textual 
matching pattern between input texts (Sarvi, Voskarides, Mooiman, Schelter, & de Rijke, 2020). Below are some 
examples of these two groups.

Representation- based models
Severyn and Moschitti (2016) use a deep learning model for reranking question– answer pairs. Additionally, they 
combine word embeddings with additional dimensions to encode overlapping words. Guo et al. (2016) view the 
matching between queries and documents as a nonlinear word transportation problem based on bag- of- word 
embeddings. DPR (Karpukhin et al., 2020) uses two independent BERT networks (Devlin et al., 2018) as encoders 
to translate queries and documents into embeddings and uses FAISS (Johnson, Douze, & Jégou, 2017) to retrieve 
the top k documents.

Interaction- based models
K- NRM (Xiong et al., 2017) uses a translation matrix that models word- level similarities via word embeddings, 
then uses kernels to extract features and an LTR layer that combines those features into the final ranking score. 
However, the translation matrix will be huge and the calculation costs will be large when the query or document's 
length is very long. We also use K- NRM as one of our baselines. Conv- KNRM (Dai, Xiong, Callan, & Liu, 2018) first 
generates n- gram embeddings using a convolution layer, then forms the translation matrix that can be treated as 
the ranking signals. However, it is also limited to the length of the query or document.

Most neural models depend on learning useful query and document text embeddings, then use simple similar-
ity metrics like cosine similarity Mitra and Craswell (2018) to find similar documents. However, these models do 
not work very well on IR tasks due to the massive data sets (Dehghani et al., 2017) and unsuitable word- based rep-
resentations (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014) for com-
plex, informal search queries. Hence, it is hard to build a model that finds a highly relevant document from a query.

2.3 | Learning to rank

Learning to rank has emerged in the intersection of machine learning, information retrieval, and natural language 
processing. It is a typically supervised, semi- supervised, or reinforcement learning method that can be used in IR. 
Learning to rank aims to solve two types of problems: ranking creation and ranking aggregation. Ranking creation 
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creates a ranking list of documents using the documents' features, while ranking aggregation creates a ranking list 
of documents using multiple ranking lists (Li, 2011b).

The core steps are encoding query– document pairs into discriminative representations or feature vectors, 
then using them as the input of an LTR model. The output will be a ranked list of documents with relevant scores.

Depending on the evaluation functions (loss functions) of LTR methods, we can divide the existing LTR 
methods into the following three categories: pointwise, pairwise, and listwise, as shown in Table 1. Pointwise 
approaches look at a single document at a time in the loss function. They essentially take a single document and 
train a classifier or regressor on it to predict how relevant it is for the current query (question). Pairwise approaches 
look at a pair of documents at a time in the loss function. Given a pair of documents, they try and come up with the 
optimal ordering for that pair and compare it to the ground truth. Listwise approaches directly look at the entire 
list of documents and try to come up with the optimal ordering for it.

3  | AN INITIAL E XPLOR ATORY EMPIRIC AL STUDY

3.1 | Motivation

With the growing need to explore spatial data and concepts, some GIS software has become very powerful, with 
hundreds of functions in the toolbox— for example, ArcMap (Gao & Goodchild, 2013). At the same time, official 
documents are becoming more and more abundant, making it hard for users to find the function they require. This 
leads users to have more questions about using GIS software. For example, one question is “Merging multiple vec-
tor layers to one layer using QGIS?” The user who asked this question is looking to merge all the layers into one 
using QGIS. For experienced uses, merging layers using QGIS is often not a problem. However, for novices, it takes 
much time to find relevant API documents. Therefore, novices tend to seek help from those with experience. If 
we can help users quickly find the information they need, users can focus on more meaningful domain problems.

3.2 | Research questions and analysis procedure

To start the empirical study, we focus on the following research questions. First, how many answers are related to 
GIS software or tools? Second, how do users answer GIS questions? Third, how can we help users get the informa-
tion they need faster?

In order to answer these questions, we collected data on the GIS section of the Stack Exchange platform from 
July 7, 2010, to March 2, 2020, including 121,250 questions with 140,311 answers.

Note that a question may have multiple answers. The user who asked the question has the option to “accept” 
an answer. Acceptance is indicated by a green checkmark next to the answer. Accepting an answer is not meant 

TA B L E  1   Three different types of learning- to- rank methods

Type Approaches

Pointwise Subset Ranking (Cossock & Zhang, 2006), McRank (Chen, Liu, Lan, Ma, & Li, 2009), Prank (Crammer 
& Singer, 2002), and OC SVM (Shashua & Levin, 2003)

Pairwise Ranking SVM (Herbrich, Graepel, & Obermayer, 2000), RankBoost (Freund, Iyer, Schapire, 
& Singer, 2003), RankNet (Burges et al., 2005), GBRank (Zheng et al., 2008), IR SVM (Cao 
et al., 2006), Lambda Rank (Burges, Ragno, & Le, 2007), and LambdaMART (Wu et al., 2010)

Listwise ListNet (Cao, Qin, Liu, Tsai, & Li, 2007), ListMLE (Xia, Liu, Wang, Zhang, & Li, 2008), AdaRank (Xu 
& Li, 2007), SVM MAP (Yue, Finley, Radlinski, & Joachims, 2007), and Soft Rank (Taylor, Guiver, 
Robertson, & Minka, 2008)
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to be a definitive and final statement indicating that the question has now been answered perfectly. It simply 
means that the author received an answer that worked for them personally. We found that the most frequently 
occurring tags of questions are QGIS, ArcGIS Desktop, Arcpy, etc. We chose QGIS as our research target because 
QGIS is the most popular software in this data set. We filtered out all the questions and answers about QGIS 
and extracted the links inside them. An example is shown in Figure 1. Having manually checked these links one 
by one, we found the four most frequent kinds of API documents about QGIS from different sources: QGIS API 
(https://qgis.org/api/), PyQGIS (https://qgis.org/pyqgi s/), QGIS Plugins (https://plugi ns.qgis.org/plugi ns/), and 
Documentation for QGIS (https://docs.qgis.org/3.10/en/docs/).

To make the data set with less messy data, we focus on the data according to the following rules (Li et al., 2018): 
(a) the question has an answer which is accepted as the best answer; and (b) the best answer must contain at least 
one link to QGIS documentation.

The link in an answer may be ambiguous. For example, one answer suggested the questioner use one QGIS 
plugin called Qdraw, but the link provided links to the plugin list page. So we manually checked each question– 
answer pair and API documentation mentioned in the answer. Of the 1,459 unique links, we found that 648 
(44.42%) links were marked with a “#” (indicating that these links point to the specific paragraph of the docu-
ments). For these documents, we only collected specific paragraph texts. If the link was not specific enough (some 
answers might want to refer to a paragraph of a web page, but the link does not point to that paragraph), we added 
an anchor point (which can jump to the specific paragraph) after the link.

3.3 | Results

From Table 2 we can draw the following conclusions. First, 77.97% of all the questions have been answered, 
which shows that CQA is a very active way for researchers to discuss domain questions. Second, only 32.96% of 
all the questions have accepted answers, indicating that it is difficult to meet the questioner's expectations. Third, 
52.93% of the accepted answers containing links, indicating that people prefer to use links to answer questions.

Figure 2 shows the distributions of numbers of answers to a question and numbers of links in an answer. 
Figure 2a provides an overview for the whole data set. Due to limited human resources, we cannot crawl through 
all the GIS software documentation, so we focus on QGIS (which is the most popular tag on the GIS section of 
Stack Exchange). Figure 2b shows that almost all (97.85%) of the answers have links. In other words, these answers 
are available in the official QGIS API documents.

F I G U R E  1   An example of extracting a question– API documentation pair from a discussion thread in the 
GIS section of Stack Exchange. Note that the answer did not provide a link for OpenLayers Plugin; we added it 
manually

https://qgis.org/api/
https://qgis.org/pyqgis/
https://plugins.qgis.org/plugins/
https://docs.qgis.org/3.10/en/docs/
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In general, this section describes our empirical study on our data set. We can draw the following conclusions 
(Figure 3). First, about 2,706 answers are related to GIS software tools. Second, users tend to attach API docu-
ment links to answers (97.85% of the QGIS- related answers have links). The latter conclusion provides a strong 
argument showing that using API documents to answer GIS developer questions is useful and helpful. Based on 
this, we came up with a deep learning- based QA system called QA4GIS. In the following section, we show how 
we built this QA system.

4  | QA4GIS:  LE ARNING TO ANSWER GIS DE VELOPER QUESTIONS 
WITH API DOCUMENTATION

In this section we first give an overview of QA4GIS, in which the inputs are questions from developers in natural lan-
guage, and the outputs are relevant API documentation. We then detail the core steps in QA4GIS to build a QA system.

4.1 | Overview of QA4GIS

As shown in Figure 4, the test phase can be treated as the workflow of our QA system. The training phase in-
dicates how we build each component of QA4GIS step by step. QA4GIS includes four primary steps as follows:

Step 1. Building question and document representations. Given a question or document, a language model can 
translate it into embeddings as the representation. Here we use the pre- trained DistilBERT (Sanh et al., 2019) 

TA B L E  2   Statistics of the data set

Type Count Percentage

All questions 121,250 – 

All answers 140,311 – 

Questions with answers 94,536 77.97% of all questions

Questions with accepted answers 39,964 32.96% of all questions

Accepted answers 48,029 34.23% of all answers

Accepted answers with links 25,422 52.93% of all accepted answers

F I G U R E  2   Distributions of the number of answers in a question and the number of links in an answer. Graph 
(a) is based on the whole data set, while (b) focuses on QGIS- related questions. All of these links point to the 
official documentation of QGIS

(a) (b)
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model to build question and document embeddings. Note that some common words (“the”, “a”, “in”, “is”) that 
might not add much value to the meaning of the sentence, called “stop- words,” need to be removed.
Step 2. Learning QA pair semantic representations. Using the question and document embeddings in step 1 as 
the input, we build a DNN model to learn the QA pair semantic representations.
Step 3. Candidate API document generation. Instead of selecting the best relevant API documents from the 
whole data set, we use the three following methods to build a subset of the entire data set by a given question: 
API document content, API document context, and embedding similarity. These will be detailed in Section 4.4.
Step 4. Learning a ranker using LambdaMART. With steps 2 and 3, we can get the representations of each 
question– candidate document pair. Then we learn a ranker using LambdaMART to rerank the candidates to 
get the final relevant API documents in order.

F I G U R E  3   Statistics of answers in four types of QGIS documentation

F I G U R E  4   The overall architecture of our approach. The training phase aims to translate each question– 
candidate document pair into abstract representations and learn a ranker with the representations. The testing 
phase aims to answer the relevant API documents in an order by a given question
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The critical steps are steps 2 and 4. Each step is detailed in the following subsections.

4.2 | Step 1: Building question and document representations

Word embeddings have been widely used to represent natural languages. Compared with traditional methods like 
one- hot representation, neural language models can capture contextual information. Recently, substantial work 
has shown that pre- trained models on the large corpus can learn universal language representations, which can 
avoid the need to train a new model from scratch (Qiu, 2020). In the work of Qiu et al. (2020), many models have 
been analyzed. Here we choose DistilBERT (Sanh et al., 2019), ELMo (Peters et al., 2018), and GPT- 2 (Radford 
et al., 2019) as our candidate pre- trained language models, and finally select DistilBERT which has the best per-
formance in our experiments.

Although DistilBERT exhibits remarkable performance (Sanh et al., 2019), it still has a shortcoming, which is 
the maximum sequence length that can be processed (defaults to 512). Thus, for questions and answers that con-
tain a token length of more than 512, we first divide them into several sentences, then use DistilBERT to convert 
them into embeddings. Finally, we concatenate the embeddints of each sentence to get the embeddings of the 
entire question or API document. These embeddings of questions and documents can be used as the input to our 
DNN model in step 2.

4.3 | Step 2: Learning QA pair semantic representations

In this step we build a DNN model to learn the semantic representation for QA pairs. As shown in Figure 5, it has 
sentence embeddings, a convolution layer, a pooling layer, a join layer, hidden layers, and a softmax layer.

The DNN model's input are the sentence embeddings of a question and an API document. We capture the 
embeddings of each sentence. For example, if there is a document that has n sentences, and each sentence is 
represented as a m- dimensional vector, then the sentence embeddings of this document will be an n × m matrix.

To better capture GIS- related information and patterns, we weight the sentence embeddings (see Figure 5). 
Specifically, we extracted 10,869 technical terms related to GIS and QGIS including API names, plugin names. and 
common attributes, from our data set. If a related term appears in a sentence, then this sentence will be given 
a weight w, and the embeddings of the sentence will be multiplied by w. The weight w will be treated as a DNN 
parameter during the training.

We calculate the maximum length of the question and the API document separately. For those questions or 
API documents with fewer words than the maximum length, we use zero- padding to fill them in. Zero- padding 
has only a minor effect and has been tested in Dwarampudi and Subba Reddy (2019). In addition, in the field of 
NLP, there are many other papers using zero- padding, e.g., Cliché (2017). The DNN model's output consists of 
two values: the probabilities that the query and document are related and unrelated. Here we say if the query 
and document are related, the query can be answered by this document. We have a two- dimensional output here 
because the softmax layer must have classifications (Bridle, 1990).

Note that the procedures to get the query and document representation are the same before the join layer.

4.3.1 | Convolution layer

The convolution layer aims to extract patterns from query embeddings or document embeddings.
Given the input sentence matrix S ∈ ℝ

d × |s| (where |s| is the count of sentences in a question or document) and 
a filter F ∈ ℝ

d ×m, the output will be a vector v ∈ ℝ
|s|−m+ 1. Each component of v is computed as:
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where * is the convolution operation, is elementwise multiplication, S[:,i:i+m−1] (m ≤ i ≤ |s| − m + 1) is a matrix slice 
of size m along the columns, and k, j are iterators of S[:,i:i+m−1] and F on rows and columns, respectively. Note that the 
convolution filter F is of the same dimensionality d as the input sentence matrix S, both equal to the dimensionality of 
each word embedding in Section 4.2.

To form a richer representation of the sentence, we apply a set of filters that work in parallel, generating 
multiple vectors v— feature maps V. In practice, we also need to add a bias vector b ∈ ℝ

n (where n is the number of 
filters) to V; the result is temporarily named E. This allows the model to learn an appropriate threshold. To learn 
nonlinear decision boundaries, we use ReLU as the activation function. Then, each component of the final output 
C of the convolution layer can be written, for i ∈ {1,…, n} and j ∈ {1,…, |s| − m + 1}, as:

4.3.2 | Pooling layer

A pooling layer is used to progressively reduce the representation's spatial size to reduce the number of param-
eters and computation in the DNN model. We use max- pooling in our model. This operates on the columns of the 
feature map matrix C, returning the maximum value pool

(
Ci

)
:ℝ|s|−m+ 1

→ ℝ, where i ∈ {1, . . . , n}. The output vec-
tor P of the pooling layer can be written as:

(1)vi = (S ∗F)i =
∑
k,j

(S[;,i:i+m−1]⊗F)k,j

(2)
Ei,j =Vi,j+bi

Ci =ReLU (Ei)=max (0, Ei)

F I G U R E  5   Deep neural network for QA pair semantic representation
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Below, we use Pq and Pa to denote the representations of query and API document, respectively.

4.3.3 | Join layer

In the join layer we combine the representations of query and document. Also we add some straightforward con-
tent features T, such as word overlap count, word overlap count weighted by inverse document frequency (IDF), 
and BM25 score (Robertson & Zaragoza, 2009) (detailed in Section 5.1) between query and document. Then the 
output J of the join layer can be written as.

While neural models have a large capacity to learn complex decision functions, they tend to overfit, especially 
on small and medium- sized data sets. To mitigate the overfitting issue, we augment the cost function with L2- 
norm regularization terms for the model's parameters (Severyn & Moschitti, 2015).

4.3.4 | Hidden layers

The hidden layers are two fully connected layers. They operate on the results of the join layer. We use two layers 
instead of one because two layers can achieve a better abstraction in our experiments. Each output of these two 
hidden layers X1,X2 with parameters W1, b1,W2, b2 can be represented as:

where ELU is the activation function of the second hidden layer, calculated as:

where alpha is a coefficient set to 1.0 by default. The second hidden layer X2 =
{
x1, x2,…, xm

}
 can be used as the final 

abstract representation of the question– document pair. We will use it to learn a ranker. The output layer uses softmax 
as an activation method. It has two output values, which represent the probabilities that the question and the docu-
ment are related and unrelated.

4.4 | Step 3: Candidate API document generation

Because there is a great deal of API documentation, it is not easy to directly select the best relevant API docu-
ment from the whole data set. Instead, we use the three methods below to build a subset of the whole data set— 
candidate API documents.

(3)P =

⎡
⎢⎢⎢⎢⎣

max
�
C1

�

. . .

max
�
Cn

�

⎤
⎥⎥⎥⎥⎦

(4)J =
[
Pq,Pa, T

]
.

(5)
X1=W1 ⋅J+b1

X2=ELU (W2 ⋅X1+b2)

(6)ELU (x) =

⎛
⎜⎜⎝
x, ifx>0

alpha* (exp (x) −1) , ifx<0
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4.4.1 | API document content

We build a search engine for software documentation using Apache Lucene. Lucene can index all the API docu-
ments. Given a query, it will return the documents containing keywords. Specifically, stop- word removal and stem-
ming are performed as pre- processing. For each query, the search engine returns the 10 most relevant results.

4.4.2 | API document context

The discussions on Stack Exchange provide enriching context to mine usage scenarios of API documents. When 
an API document appears in a discussion thread, its surrounding texts reflect its relevance to the question. Since 
an API document can be mentioned in multiple threads, we collected all the surrounding texts from different 
answers about each document. That is, given a query, we search the answers containing keywords and returning 
the API documents mentioned in the answers. For each query, we also use Apache Lucene to get the 10 most 
relevant results.

4.4.3 | Embedding similarity

We use the language model trained in step 1 to translate each word in questions and documents into embed-
dings. By averaging word embeddings in a sentence, we can get the sentence embeddings. Then, given a query, 
we retrieve the top 10 API documents based on the cosine similarity between the question embeddings and API 
document embeddings. Cosine similarity is calculated as:

where ‖x‖ is the Euclidean norm of vector x =
(
x1, x2,…, xn

)
, defined as 

√
x2
1
+ x2

2
+… + x2

n
 (and similarly for ‖y‖). The 

closer the cosine similarity value to 1, the greater the match between vectors.
Then we merge the related API documents searched by the above methods. Since there may be an intersection 

among them, we will get up to 30 results. For example, given a query “Choropleth of calculated Voronoi poly-
gons?” we may get the following related API documents: {qgis_docs_print_composer, qgis_docs_geometry_tools, 
qgis_docs_geometry,…}. Note that the order in which they appear can be ignored.

4.5 | Step 4: Learning a ranker using LambdaMART

The last step of our approach is to learn a ranker to rerank the candidate API documents. As described in Section 4.3.4, 
the output of the second hidden layer of the DNN can be thought of as the final abstract representation X of a query– 
API document pair. Our goal is to build a ranking model f :X → ℝ trained to map the vector X to a real- valued score such 
that, for a given query, more relevant documents are scored higher among all the candidate documents.

To build such a model, we briefly study some other existing LTR approaches. As shown in Table 1, LambdaMART 
(Wu et al., 2010) achieved the best performance in the recent Yahoo! Learning to Rank Challenge. So we use 
LambdaMART to learn such a ranker. As shown in Figure 6, the training data (input) of the LTR model consists of 
n instances; each instance contains one query q, the representations X =

(
x1, x2,…, xm

)
 of each query– document 

pair, and a label y (1 for related, 0 for unrelated). The output of the LTR model are ranked API documents with 
relevance scores. The higher the score, the higher the ranking.

(7)sim (x, y) =
x ⋅ y

‖x‖ ‖y‖



     |  2687WANG et Al.

5  | EMPIRIC AL E VALUATION

5.1 | Research questions

To evaluate QA4GIS, we seek to answer the following research questions:
RQ1. Overall QA comparability study. How does QA4GIS compare to other state- of- the- art methods in 

performance?
RQ2. Sensitivity analysis of QA4GIS. How do various factors affect the overall performance of QA4GIS?
RQ3. Qualitative analysis of QA4GIS. How well does QA4GIS perform in answering real questions?

5.2 | Data set

We collected data on the Stack Exchange platform's GIS section from July 7, 2010 to March 2, 2020, including 
121,250 questions with 140,311 answers. For the API documents mentioned in the questions and answers, there 
are four most frequent kinds of API documents about QGIS from different sources: QGIS API (https://qgis.org/
api/), PyQGIS (https://qgis.org/pyqgi s/), QGIS Plugins (https://plugi ns.qgis.org/plugi ns/), and Documentation for 
QGIS (https://docs.qgis.org/3.10/en/docs/). We wrote a spider using Python to crawl all of these.

Since the content and structure of these four types of documents are different, we process them separately. 
QGIS API mainly introduces various libraries of QGIS, most of which are descriptions of namespaces, classes, and 
functions in the code. We need to remove a large number of meaningless variable declarations, such as “double 
u” and “int I”. PyQGIS is similar to QGIS API, but has a different content structure. Here again we need to remove 
the variable declarations. QGIS Plugins contains 1,266 plugin introductions, and some plugins provide other web 
pages to introduce the uses. So we have to organize the introduction of each plugin manually. Documentation for 

F I G U R E  6   Learning a ranker to re- rank the candidate API documents

https://qgis.org/api/
https://qgis.org/api/
https://qgis.org/pyqgis/
https://plugins.qgis.org/plugins/
https://docs.qgis.org/3.10/en/docs/
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QGIS is the most detailed documentation in QGIS, with rich text and graphic tutorials. The link to it often contains 
“#”, so we need to extract the corresponding paragraphs.

As shown in Figure 7, we organize our data as follows. Four folders correspond to API documents from the four 
sources. In each folder are lots of subfolders named with question- IDs that include the current type of documents. 
Each question folder contains a question, answer, and API documents mentioned in the answer (named with the 
title of API document). Note that there may be more than one document mentioned in an answer.

5.3 | Evaluation methodology

5.3.1 | RQ1: Overall QA comparability study

Model training and settings
This subsection details how we train our models in QA4GIS, build the input data and specify the hyperparameters. 
There are two models that need to be trained: the DNN model and the LTR model.

The training data for the DNN model consists of positive samples (labeled 1) and negative samples (labeled 
0). The positive samples are the ground- truths (e.g., if an API document is mentioned in the accepted answer of 
a question, then it is one of the ground- truths), while the negative samples are the documents that are unrelated 
to the question at hand. We do this to learn a loss function that reduces the distance between a question and its 
positive samples, but increases the distance between a question and its negative samples. Given a question, we 
consider two ways to generate negative samples: randomly selecting the documents which appear in the training 
set; using BM25 (Robertson & Walker, 1994; Robertson & Zaragoza, 2009) to retrieve documents which do not 
contain the answer but match question tokens heavily.

BM25 is a probabilistic model representing the relevance of document d to query q. It is calculated as:

where w denotes a word in d and q, tf (w) denotes the frequency of w in d, idf (w) denotes the inverse document fre-
quency of w, dl denotes the length of d, avgdl denotes the average document length, and k and b are parameters. We 
take k = 1.5, b = 0.75 in our experiments. We chose BM25 because it is an excellent traditional method and does not 
require training.

(8)BM25(q, d) =
∑

w ∈ q∩ d

idf (w)
(k + 1) tf (w)

tf (w) + k
(
(1 − b) + b

dl

avgdl

)

F I G U R E  7   The structure of our data set. Folder numbers are question IDs
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Let D = { ⟨qi , d +
i,m
,…, d +

i,m
, d −

i,1
,…, d −

i,n
⟩}k

i= 1
 be the training data, consisting of k instances. Each instance contains 

one question qi and m relevant (positive) documents d +
i,j

, along with n irrelevant (negative) documents d −
i,j

. For the 
DNN model, the ratio between positive samples and negative samples is 1: 1. With the trained language model, we 
can translate these samples into embeddings as the DNN model's input.

Our training parameters are set as follows: the dimension of each sentence embedding is 768, the weight of 
sentences with GIS- related terms is 1.5, the number of filters and kernel size (specifying the length of the convo-
lution window) in the convolution layer are 64 and 5 respectively, the first hidden layer size is 128, and the second 
hidden layer size is 64.

For the LTR model, we also need positive and negative samples to train it. In this case, we prepare the training 
data according to three different rates between positive and negative samples: m: 1, m: 10, m: 30, where m is the 
number of ground truths in an instance. Then using these samples as the input of the learned DNN model, we can 
extract the second hidden layer's output from the DNN model as the features of the question– API documents. 
These features are the input of the LTR model. We use Ranklib (https://sourc eforge.net/p/lemur/ wiki/RankL ib/) 
to implement our LTR model. The detailed data format description can be found here (https://sourc eforge.net/p/
lemur/ wiki/RankL ib%20Fil e%20For mat/).

Evaluation metrics and baselines
The metrics used to evaluate the quality of our ranker model and baselines are precision at k (P@k), recall at k 
(R@k), mean average precision (MAP), and mean reciprocal rank (MRR), which are common in information retrieval 
and question answering tasks.

• P@k =
|||Dk ∩ Dg

||| ∕k, is the fraction of API documents relevant to the query question among the top k ranked 
results. Dk denotes the set of top k ranked API documents and Dg is the set of ground- truth API documents.

• R@k =
|||Dk ∩ Dg |∕|Dg

||| is the fraction of ground- truth API documents in the top k results.
• MAP (Q) =

1

�Q�
∑ �Q�

j= 1
AveP (j), where AveP (j) is the average prediction (AP) for query j. The AP uses a combination 

of the precision at successive sub- lists, combined with the change in recall in these sub- lists (https://en.wikip 
edia.org/wiki/Evalu ation_measu res_(infor mation_retri eval)). Q is the set of test queries. This metric is able to 
give more weight to errors that happen high up in the recommended lists. Conversely, it gives less weight to 
errors that happen deeper in the recommended lists. This matches the need to show as many relevant items as 
possible high up the recommended list.

• MRR (Q) =
1

�Q�
∑ �Q�

j= 1

1

rank(j)
, where rank (j) is the position of the first relevant API document in the candidate list, 

Q is the set of test queries. MRR only focuses on the rank of the first relevant API document. Hence it is more 
suitable in cases where there is only one API document related to the question.

To answer the RQ1, we chose the following essentially different methods as our baselines.

• Lucene (https://lucene.apache.org/), Lucene is an open- source search engine developed by the Apache 
Software Foundation. Given a query, we use Lucene to search the API documents, and it returns top k ranked 
results.

• Okapi BM25 (Robertson & Zaragoza, 2009). BM25 is a traditional method that is a bag- of- words retrieval func-
tion that ranks a set of API documents based on the query terms appearing in each document.

• Word2vec (Mikolov et al., 2013). We use Word2vec to build the word embeddings and calculate the cosine 
similarity between each query and API document. The closer the cosine similarity score is to 1, the better the 
match between the document and the question.

• Word mover distance (WMD) (Brokos et al., 2016). Similar to Word2vec, WMD is based on word embeddings, but 
it focuses on the distance between embeddings. The distance between query and API document is calculated 

https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib File Format/
https://sourceforge.net/p/lemur/wiki/RankLib File Format/
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval
https://lucene.apache.org/
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by the minimum cumulative distance that words from the query need to travel to match the point cloud of the 
API document.

• K- NRM (Xiong et al., 2017). K- NRM is an interaction- based method. Given the query words and API document 
words, K- NRM calculates the word– word similarities and forms the translation matrix. It then extracts ranking 
features from the translation matrix and uses the LTR model to combine the features to get the final ranking 
score.

• Pre- trained ELMo (Peters et al., 2018). ELMo is a deep contextualized word representation model. This baseline 
uses a pre- trained ELMo model (https://tfhub.dev/googl e/elmo/3) to build embeddings for each question and 
document. Since the pre- trained ELMo model cannot handle a document which is larger than the default max-
imum sequence length of the model, we first split each document into multiple sentences, then use ELMo to 
calculate the embedding of each sentence and take the average value as the embedding of the entire document, 
and finally calculate the cosine similarity between the questions and API documents.

• Pre- trained DistilBERT (Sanh et al., 2019). DistilBERT is a distilled version of BERT (Devlin et al., 2018). This 
baseline uses a pre- trained DistilBERT model (https://huggi ngface.co/trans forme rs/model_doc/disti lbert.
html) to build embeddings for each question and document. We proceed in the same way as pre- trained 
ELMo to build document embeddings, then calculate the cosine similarity between the questions and API 
documents.

• Pre- trained GPT- 2 (Radford et al., 2019). GPT- 2 is a large transformer- based language model with 1.5 billion 
parameters. This baseline uses the pre- trained GPT- 2 mode (https://huggi ngface.co/trans forme rs/model_doc/
gpt2.html) to build embeddings for each question and document. We proceed in the same way as pre- trained 
ELMo to build document embeddings, then calculate the cosine similarity between the questions and API 
documents.

• SIF (Arora, Liang, & Ma, 2017). SIF is a method to calculate sentence embeddings. It first uses a pre- trained 
language model to get word vectors, then modifies the weights by using the random walk model (Arora 
et al., 2017). We use this baseline to get the embeddings of each question and document, and then calculate 
the cosine similarities.

5.3.2 | RQ2: Sensitivity analysis of QA4GIS

QA4GIS has four components, namely the language model, DNN model, candidate documents generator, and 
ranker. The first three components are for the last component, the ranker. For the DNN model, we mainly fine- 
tune the parameters until we find the best parameters. The candidate documents generator is mainly used to nar-
row the scope of the API documents. If we directly run the ranker on the whole data set, we need a huge amount 
of calculation, but the impact of final rank results is minimal.

As the input of the DNN model, the amount of semantic information contained in sentence embeddings will 
greatly affect the results of the experiment. Therefore, we selected four language models and tested their influ-
ence on the experimental results under the same data set. These language models are: Mikolov's skip- gram model 
(also known as Word2vec) (Collobert et al., 2011; Turian, Ratinov, & Bengio, 2010), DistilBERT (Sanh et al., 2019), 
ELMo (Peters et al., 2018), and GPT- 2 (Radford et al., 2019). Note that to get good training performance, DistilBERT, 
ELMo, and GPT- 2 require a much larger data set than the one we manually collected. Thus we use the pre- trained 
models (as same as the baseline experiments) instead of training by ourselves.

Learning to rank is an essential component of QA4GIS, which directly affects the final result. We have cho-
sen the following three LTR factors to observe how the final performance will be affected if modified (the two 
methods to generate negative samples were detailed earlier): (1) the number of negative samples; (2) the method 
(random or BM25) to generate negative samples; and (3) whether to use an LTR model.

https://tfhub.dev/google/elmo/3
https://huggingface.co/transformers/model_doc/distilbert.html
https://huggingface.co/transformers/model_doc/distilbert.html
https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/model_doc/gpt2.html
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5.3.3 | RQ3: Qualitative analysis of QA4GIS

To more intuitively reflect the performance of QA4GIS, we will compare QA4GIS with the best baseline by some 
real examples. Specifically, given an API- related question, we use each of them to recommend the top 30 API 
documents in order, and then compare the ranking of the ground- truth documents in the two sets of results. The 
higher the ranking, the better the performance.

5.4 | Evaluation results

5.4.1 | Results of RQ1: Overall QA comparability study

The ranking performance of each ranking method on the GIS data set is shown in Table 3. In each evalua-
tion metric, the best score is highlighted in bold. Our QA4GIS approach outperforms all other baselines on 
all evaluation metrics. Below each QA4GIS metric score, we calculate the percentage improvement of our 
method over the second- best method. Specifically, compared with the best performance baseline SIF, we 
improve 21.39% on the MAP score and 22.34% on the MRR score. We even improved 54.65% on the P@10 
metric.

Observe that as k grows, P@k becomes smaller on all the methods, including our approach. This phenomenon 
is related to the number of ground- truth documents. On Stack Exchange, 70.46% of the answers contain only one 
link to the API document (reported in Figure 2b). As a result, |||Dk ∩ Dg

||| = 1 in most cases. Thus, the ideal value of 
P@k is slightly above 1∕k when k > 1. So it is not surprising that P@10 is very small for all the methods.

5.4.2 | Results of RQ2: Sensitivity analysis of QA4GIS

Impact of the different language models
As can be seen from the Table 4, different language models have quite different experimental results. The best 
experimental result is DistilBERT, whose MAP and MRR are 0.3819 and 0.3971, respectively. The worst experi-
mental result is GPT- 2, scoring only 0.1492 and 0.1551. Compared with Word2vec, DistilBERT has improved by 
30.07% and 35.76% in terms of MAP and MRR, respectively.

Impact of the number of negative samples
Table 5 shows that the number of negative samples can affect the performance of our approach. We tested three 
different numbers of negative samples: {1, 10, 30}. As shown in Table 5, adding more negative samples does not 
improve the MAP and MRR scores. On the contrary, it can lower the scores. Note that in this experiment, the 
language model we used is Word2vec, the method to generate negative samples is BM25, and the LTR model is 
LambdaMART.

Impact of the method to generate negative samples
Table 6 shows that the different methods to generate negative samples can also affect the performance of our 
approach. Compared with random selection, using BM25 to generate negative samples can achieve improvements 
of 42.87% on the MAP score and 43.25% on the MRR score. Because it uses documents that are close to but not 
equal to the ground- truths, the LTR model can better learn the features which are more conducive to describing 
the document. Note that in this experiment, the language model we used is Word2vec, the number of negative 
samples is 1, and the LTR model is LambdaMART.
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Impact of whether to use an LTR model
Table 7 shows that using an LTR model can significantly improve performance. Compared with not using an LTR 
model, LambdaMART can achieve improvements of 75.39% on the MAP score and 74.42% on the MRR score. 
Note that in this experiment, the language model we used is Word2vec, the number of negative samples is 1, and 
the method to generate negative samples is BM25.

We have also experimented with several other factors for our approach, such as using more LTR model fea-
tures to rank models and fine- tuning the DNN model parameters. However, we only observed similar or worse 
performances. Thus, we chose to present the simplest successful model to illustrate its effectiveness better.

5.4.3 | Results of RQ3: Qualitative analysis of QA4GIS

We chose three real questions from the Stack Exchange website to compare QA4GIS with SIF. These questions 
are: “Choropleth of calculated Voronoi polygons?”, “GIS dataset with latitude, longitude, and elevation”, and 
“Extracting shapefile attributes from raster colors using PyQGIS?” As shown in Tables 8– 10, the ground- truth 
documents all rank first in the QA4GIS results, while they rank 23, after 30, and 15 respectively in SIF.

The difference between QA4GIS and SIF
It is evident that QA4GIS can achieve a better performance than SIF. Although both methods learn sentence em-
beddings, the relationship between the questions and the API documents is different under the two methods. What 

TA B L E  4   Results of RQ2. MAP and MRR performance of QA4GIS under different language models

Language models MAP MRR

Word2vec 0.2936 0.2925

Pre- trained DistilBERT 0.3819 0.3971

Pre- trained ELMo 0.2849 0.2984

Pre- trained GPT- 2 0.1492 0.1551

Note: The best performance is highlighted in bold.

TA B L E  5   Results of RQ2. MAP and MRR performance of QA4GIS under different numbers of negative 
samples

Number of negative samples MAP MRR

1 0.2936 0.2925

10 0.2405 0.2390

30 0.2264 0.2255

Note: The best performance is highlighted in bold.

TA B L E  6   Results of RQ2. MAP and MRR performance of QA4GIS under different methods to generate 
negative samples

Method MAP MRR

Random 0.2055 0.2042

BM25 0.2936 (↑ 42.87%) 0.2925 (↑ 43.25%)

Note: The best performance is highlighted in bold. The percentage after the best score is the percentage of 
improvements compared with another method.
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SIF learns is an independent sentence representation, and there is no relationship between questions and docu-
ments. QA4GIS learns how to represent each pair of questions and documents. Any question and any document 
can be expressed as embeddings of a fixed dimension. SIF has a very good performance (compared to BERT) when 
calculating the similarity between documents and problems. However, the high similarity between the document 
and the question does not mean that the document can answer the user's question, because a technical prob-
lem often has multiple solutions. Therefore, QA4GIS, which can learn and extract the features of the question– 
document pair, performs better.

6  | DISCUSSION

In this section we discuss the advantages, limitations and some applications of QA4GIS, we also discuss whether 
our method can be used for other data sets.

6.1 | The advantages of QA4GIS

First, compared with traditional methods, such as Lucene and BM25, QA4GIS can find the relevant documents 
even if there is no identical word in the question and the document. Second, compared with word embedding 
methods, such as Word2vec, ELMo, GPT- 2, and BERT, QA4GIS can extract the features from questions and docu-
ment embeddings using a convolution layer. Using the extracted features instead of the original word embeddings 
is an improvement we made based on the above word embedding methods. Third, compared with K- NRM, which 
is very similar to QA4GIS, we use additional features to describe the relationship between the question and docu-
ment, and use three methods to generate candidate answers to improve the hit rate.

6.2 | The limitations of QA4GIS

First, our approach does not work well when the questions contain too many codes and few natural language 
words. Because the variable names in the code are often abbreviations of words, they are meaningless. Second, 
our approach does not work well on questions that are too general. Without a more detailed description, it is dif-
ficult for even experts to give appropriate recommendations.

6.3 | Applications of QA4GIS

With QA4GIS, one direct application is that we can build a GIS information retrieval website where users 
can query the API documents they need in natural languages. The second application is a plugin based on 

TA B L E  7   Results of RQ2. MAP and MRR performance of QA4GIS regarding whether to use a learning- to- 
rank model

Learning- to- rank model MAP MRR

None 0.1674 0.1677

LambdaMART 0.2936 (↑ 75.39%) 0.2925 (↑ 74.42%)

Note: The best performance is highlighted in bold. The percentage after the best score is the percentage of 
improvements compared with another method.
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Google Chrome. When a user enters the GIS section of the Stack Exchange website and uses the search 
function developed by the Stack Exchange, the plugin can search simultaneously and give suggested API 
documents.

TA B L E  8   Results of RQ3. The API documentations recommended by QA4GIS and SIF for the question 
“Choropleth of calculated Voronoi polygons?”

Rank QA4GIS SIF

1 qgis_docs_print_composer ✓ qgis_api_qgszonalstatistics_class_reference

2 qgis_docs_geometry_tools qgis_docs_information

3 qgis_docs_geometry qgis_docs_a_gentle_introduction_to_gis

4 qgis_docs_clipping_and_merging_raster_layers qgis_docs_extract_vertices

5 qgis_docs_modifying_vector_layers qgis_docs_raster_to_vector_conversion

6 qgis_docs_geometry_functions qgis_docs_topological_editing

7 qgis_pyqgis_length qgis_docs_editing

8 qgis_docs_default_values qgis_docs_zonal_statistics_plugin

9 qgis_docs_field_calculator qgis_docs_general_tools

10 qgis_docs_geometry_predicates_and_operations qgis_docs_working_with_the_attribute_
table

… … …

23 qgis_plugins_AutoFields qgis_docs_print_composer ✓

… … …

Note: The underline and checkmark (✓) after the API document title indicates that the document is ground- truth.

TA B L E  9   Results of RQ3. The API documentations recommended by QA4GIS and SIF for the question “GIS 
dataset with latitude, longitude, and elevation.”

Rank QA4GIS SIF

1 qgis_docs_gdal2xyz ✓ qgis_docs_query_builder

2 qgis_pyqgis_qgsgpsinformation qgis_api_qgsrastercalculator_class_reference

3 qgis_api_qgsgpsinformation_struct_reference qgis_docs_topological_editing

4 qgis_docs_introducing_gis qgis_docs_raster_calculator

5 qgis_docs_coordinate_reference_systems qgis_docs_raster_to_vector_conversion

6 qgis_docs_coordinate_reference_system_crs_in_
detail

qgis_docs_general_tools

7 qgis_docs_custom_coordinate_reference_system qgis_docs_information

8 qgis_docs_inverse_distance_weighted_idw qgis_docs_symbology_properties

9 qgis_docs_changing_raster_symbology qgis_docs_setting_the_snapping_tolerance_
and_search_radius

10 qgis_docs_importing_a_delimited_text_file qgis_docs_heatmap_plugin

11 qgis_docs_default_values qgis_docs_using_spatial_index

… … …

30 qgis_docs_loading_a_layer_from_a_file qgis_docs_importing_a_delimited_text_file

Note: The underline and checkmark (✓) after the API document title indicates that the document is ground- truth.
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6.4 | Can QA4GIS be used on other data sets?

Normally, it cannot be used in other domains. First, our data set is all the API documents about GIS software, so 
QA4GIS is designed for its content which contains GIS terms, code, and text. In other domains, the questions and 
answers may contain quite different text. For example, in the physics section of Stack Exchange, many questions 
and answers contain mathematical formulas which are hard for machine learning models to learn the representa-
tions. Second, we added GIS- related prior knowledge to our model using weighted sentence embeddings (detailed 
in Section 4.3), so the data sets that can be used in QA4GIS should also have a piece of prior knowledge infor-
mation. Third, a common trend in GIS question answering is to use Knowledge Graph (KG) to answer spatial or 
geographic questions, for example, the KG data set DB18 mentioned in Mai et al. (2019) and DBGeo mentioned in 
Mai et al. (2020). But our model is not designed for KGs. We tried unsuccessfully to find an public natural language 
question answering data set in the GIS domain.

7  | CONCLUSIONS

In this article we did an empirical analysis of questions and answers on the GIS section of the Stack Exchange 
website and demonstrated the feasibility of answering programming related questions with API documents. 
We then proposed QA4GIS, a deep learning- based question answering tool containing a DNN model for 
semantic representation of question– API document pairs, a candidate documents generator, and a learning- 
to- rank model for ranking the candidates. Our experiments showed that QA4GIS improves 21.39% on the 
MAP score and 22.34% on the MRR score compared with the best baseline SIF. Finally, we discussed the 
advantages and limitations of QA4GIS. We also described some applications that we would like to implement 
as future work.

TA B L E  1 0   Results of RQ3. The API documentations recommended by QA4GIS and SIF for the question 
“Extracting shapefile attributes from raster colors using PyQGIS?”

Rank QA4GIS SIF

1 qgis_docs_using_raster_layers ✓ qgis_docs_list_of_functions

2 qgis_docs_changing_raster_symbology qgis_docs_status_bar

3 qgis_docs_using_pyqgis_in_custom_applications qgis_docs_using_vector_layers

4 qgis_docs_iterating_over_vector_layer qgis_docs_rule_based_renderer

5 qgis_docs_symbology_properties qgis_docs_editing_attribute_values

6 qgis_pyqgis_iterating_over_vector_layer qgis_docs_setting_the_snapping_
tolerance_and_search_radius

7 qgis_docs_graduated_renderer qgis_pyqgis_geometry_handling

8 qgis_docs_zonal_statistics_plugin qgis_docs_geometry

9 qgis_docs_raster_terrain_analysis_plugin qgis_docs_field_calculator

10 qgis_docs_pyqgis_developer_cookbook qgis_docs_working_with_projections

… … …

15 qgis_docs_creating_a_new_shapefile_layer qgis_docs_using_raster_layers ✓

… … …

Note: The underline and checkmark (✓) after the API document title indicates that the document is ground- truth.
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APPENDIX A

Acronyms and abbreviations

TA B L E  A 1   Acronyms and abbreviations in this paper

Acronym/abbreviation Description

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CQA Community- based Question Answering

DNN Deep Neural Network

ELMo Embeddings from Language Models

ELU Exponential Linear Unit

GIS Geographic Information System

GPT- 2 Generative Pretrained Transformer 2

IDF Inverse Document Frequency

KG Knowledge Graph

LTR Learning To Rank

MAP Mean Average Precision

MRR Mean Reciprocal Rank

QA Query- API document

WMD Word Mover's Distance
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